
//Simbiosis Meditativa. Jean Laffert. 2015
//Código generador de patrón gráfico a proyectarse sobre la planta
//Este código es una variación de “Sutcliffe Pentagon” de Matt Pearson,
//extraído de: Generative Art, Pearson, Manning 2011, Pág. 170-183
//Para cargar el gráfico de datos de Co2, es necesario implementar la librería
//gwoptics.jar – descargarla en:
//	
 http://jdlaffert.com/simbiosis-esp-informatica.html

import processing.serial.*;
//////gráfico valores de Co2:
 import org.gwoptics.graphics.graph2D.Graph2D;
 import org.gwoptics.graphics.graph2D.traces.ILine2DEquation;
 import org.gwoptics.graphics.graph2D.traces.RollingLine2DTrace;
 class eq implements ILine2DEquation{
 public double computePoint(double x,int pos) {
 return b;
 }
 }
 RollingLine2DTrace r;
 Graph2D g;
 Serial myPort;
 int[] serialInArray = new int[0];
 int serialCount = 0;
 boolean firstContact = false;
//////variables patrón hexagonal:
FractalRoot pentagon;
float _strutFactor =0.00001;//punto c del apartado
float _strutNoise;
float a;
float b;
int _maxLevels = 2;
//////programa/////////
void setup() {
 frameRate (10);
 size(1250, 775);
 smooth();
 _strutNoise=random(10);
 println(Serial.list());
 myPort = new Serial(this, Serial.list()[5], 9600);
 myPort.bufferUntil('\n'); //recibe dato desde arduino (sensor CO2)
////////////// gráfico de valores de Co2:
 r = new RollingLine2DTrace(new eq() ,1000,0.1f);
 r.setTraceColour(255,0,0);
 g = new Graph2D(this, 410,650, false);
 g.setYAxisMax(3000);
 g.addTrace(r);
 g.position.y = 50;
 g.position.x = 100;
 g.setYAxisTickSpacing(50);
}

void draw(){
background (0);
// SerialCallResponse:
String inString = myPort.readStringUntil('\n');
 if (inString != null) {
 inString = trim(inString);
 float inByte = float(inString);
 b = inByte; //punto c del apartado (dato desde el sensor de CO2).
 }
a = b /800;

//funciones de la figura:
_strutNoise+= 0.01;

_strutFactor=(noise(_strutNoise) /a);//punto c del apartado
pentagon=new FractalRoot(frameCount);// punto b del apartado
pentagon.drawShape();
noStroke();
fill(0);
//escribir en la cosnola, para identificar el valor de a = CO2:
 println(inString +" inST "+
 a +" a \t" +
 _strutNoise + " SN " +
 _strutFactor + " SF " + b);
//bloque fondo blanco para gráfico Co2:
 fill(255);
 rect(0,0,590,770);
 g.draw();
}
void serialEvent (Serial myPort) {
 } //arduino

//////objetos///////
class PointObj {
 float x, y;
 PointObj(float ex, float why) {
 x = ex;
 y = why;
 }
}
class FractalRoot {
 PointObj[] pointArr = new PointObj[6]; // punto a del enuciado (6 vértices para
formar un hexágono)
 Branch rootBranch;
 FractalRoot(float startAngle) {
 float centX = width-300;
 float centY = height-500;
 int count = 0;
 for (int i = 0; i<360; i+=60) { // punto a del enuciado (60º para formar un
hexágono)
 float x = centX + (240 * cos(radians(i)));// para modificar el tamaño de la
imagen
 float y = centY + (240 * sin(radians(i)));// idem
 pointArr[count] = new PointObj(x, y);
 count++;
 }
 rootBranch = new Branch(0, 0, pointArr);
 }
 void drawShape() {
 rootBranch.drawMe();
 }
}
class Branch {
 int level, num;
 PointObj[] outerPoints = {
 };
 PointObj[] midPoints = {
 };
 PointObj[] projPoints = {
 };
 Branch[] myBranches = {
 };
 Branch(int lev, int n, PointObj[]points) {
 level = lev;
 num = n;
 outerPoints = points;
 midPoints = calcMidPoints();
 projPoints = calcStrutPoints();

 if ((level+1)< _maxLevels) {
 Branch childBranch = new Branch(level+1, 0, projPoints);
 myBranches = (Branch[])append(myBranches, childBranch);

 for (int k=0; k<outerPoints.length; k++) {
 int nextk = (k+4)%outerPoints.length;
 PointObj[] newPoints = {
 outerPoints[k], midPoints[k], projPoints[k], projPoints[nextk],
midPoints[nextk]
 };
 childBranch = new Branch(level+1, k+1, newPoints);
 myBranches = (Branch[])append(myBranches, childBranch);
 }
 }
 }

 void drawMe() {
 stroke(255,250,200);
 strokeWeight(6);
 for (int i = 0; i < outerPoints.length; i++) {
 int nexti = i+1;
 if (nexti == outerPoints.length) {
 nexti = 0;
 }
 line(outerPoints[i].x, outerPoints[i].y, outerPoints[nexti].x,
outerPoints[nexti].y);
 }
// las líneas desde los puntos medios:
 strokeWeight(2);
 fill(255,0,0);
 for(int j=0; j<midPoints.length; j++) {
 ellipse(midPoints[j].x, midPoints[j].y, 5, 5);//la posición de los puntos
medios en la línea base del hexagono
 line(midPoints[j].x, midPoints[j].y, projPoints[j].x, projPoints[j].y); //
las líneas a desprender desde el punto medio
 ellipse(projPoints[j].x, projPoints[j].y, 5, 5);//el punto final de la
línea
 }
 // dibuja la sub-estructura ramificada:
 for(int k=0; k<myBranches.length; k++) {
 myBranches[k].drawMe();
 }
 }

 PointObj[] calcMidPoints() {
 PointObj[] mpArray = new PointObj[outerPoints.length];
 for (int i = 0; i < outerPoints.length; i++) {
 int nexti = i+1;
 if (nexti == outerPoints.length) {
 nexti = 0;
 }
 PointObj thisMP = calcMidPoint(outerPoints[i], outerPoints[nexti]);
 mpArray[i] = thisMP;
 }
 return mpArray;
 }

 PointObj calcMidPoint(PointObj end1, PointObj end2) {
 float mx, my;
 if(end1.x>end2.x) {
 mx=end2.x + ((end1.x - end2.x)/2);
 }else{
 mx=end1.x+((end2.x-end1.x)/2);
 }
 if(end1.y>end2.y){

 my=end2.y+((end1.y-end2.y)/2);
 }else{
 my=end1.y+((end2.y-end1.y)/2);
 }
 return new PointObj(mx,my);
 }

 PointObj[] calcStrutPoints() {
 PointObj[] strutArray = new PointObj[midPoints.length];
 for(int i=0; i< midPoints.length; i++) {
 int nexti = (i+3)%midPoints.length ;
 PointObj thisSP = calcProjPoint(midPoints[i], outerPoints[nexti]);
 strutArray[i] = thisSP;
 }
 return strutArray;
 }

 PointObj calcProjPoint(PointObj mp, PointObj op) {
 float px, py;
 /// inicio de los cálculos trigonométricos para la proyección de los puntos
medios:
 float adj,opp;
 if(op.x>mp.x){
 opp=op.x-mp.x;
 }else{
 opp=mp.x-op.x;
 }
 if(op.y>mp.y){
 adj=op.y-mp.y;
 }else{
 adj=mp.y-op.y;
 }
 if(op.x>mp.x){
 px=mp.x+(opp*_strutFactor);
 }else{
 px=mp.x-(opp*_strutFactor);
 }
 if(op.y>mp.y){
 py=mp.y+(adj*_strutFactor);
 }else{
 py=mp.y-(adj*_strutFactor);
 }
 /// fin de los cálculos trigonométricos para la proyección de los puntos
medios:
 return new PointObj(px, py);
 }
}	

