//Simbiosis Meditativa. Jean Laffert. 2015

//Cédigo generador de patrdén grdfico a proyectarse sobre la planta

//Este cédigo es una variacién de “Sutcliffe Pentagon” de Matt Pearson,
//extraido de: Generative Art, Pearson, Manning 2011, Pag. 170-183

//Para cargar el grafico de datos de Co2, es necesario implementar la libreria
//gwoptics.jar — descargarla en:

// http://jdlaffert.com/simbiosis-esp-informatica.html

import processing.serial.*;
//////grafico valores de Co2:
import org.gwoptics.graphics.graph2D.Graph2D;
import org.gwoptics.graphics.graph2D.traces.ILine2DEquation;
import org.gwoptics.graphics.graph2D.traces.RollingLine2DTrace;
class eq implements ILine2DEquation{
public double computePoint(double x,int pos) {
return b;
}
}

RollingLine2DTrace r;
Graph2D g;
Serial myPort;
int[] serialInArray = new int[0];
int serialCount = 0;
boolean firstContact = false;
//////variables patrén hexagonal:
FractalRoot pentagon;
float _strutFactor =0.00001;//punto c del apartado
float _strutNoise;
float a;
float b;
int _maxLevels = 2;
//////programa/////////
void setup() {
frameRate (10);
size(1250, 775);
smooth();
_strutNoise=random(10);
println(Serial.list());
myPort = new Serial(this, Serial.list()[5], 9600);
myPort.bufferUntil('\n'); //recibe dato desde arduino (sensor CO02)
////////////// grafico de valores de Co2:
r = new RollingLine2DTrace(new eq() ,1000,0.1f);
.setTraceColour(255,0,0);
= new Graph2D(this, 410,650, false);
.setYAxisMax(3000);
.addTrace(r);
.position.y = 50;
.position.x = 100;
.setYAxisTickSpacing(50);

QuUuuUuuuuuau R

}

void draw(){
background (0);

// SerialCallResponse:
String inString = myPort.readStringUntil('\n');

if (inString != null) {

inString = trim(inString);

float inByte = float(inString);
b = inByte; //punto c del apartado (dato desde el sensor de CO2).

}
a=>b /800;

//funciones de la figura:
_strutNoise+= 0.01;

_strutFactor=(noise(_strutNoise) /a);//punto c del apartado
pentagon=new FractalRoot (frameCount);// punto b del apartado
pentagon.drawShape();

noStroke();

£i11(0);
//escribir en la cosnola, para identificar el valor de a = CO2:
println(inString +" inST "+
a +" a \t" +
_strutNoise + " SN "o+
_strutFactor + " SF "+ b);
//bloque fondo blanco para grdfico Co2:
£i11(255);
rect(0,0,590,770);
g.draw();

void serialEvent (Serial myPort) {
} //arduino

//////objetos///////
class PointObj {
float x, y;
PointObj(float ex, float why) {
X = ex;
y = why;
}
}
class FractalRoot {
PointObj[] pointArr = new PointObj[6]; // punto a del enuciado (6 vértices para
formar un hexagono)
Branch rootBranch;
FractalRoot (float startAngle) {
float centX = width-300;
float centY = height-500;
int count = 0;
for (int i = 0; i<360; i+=60) { // punto a del enuciado (602 para formar un
hexagono)
float x = centX + (240 * cos(radians(i)));// para modificar el tamafio de la
imagen
float y = centY + (240 * sin(radians(i)));// idem
pointArr[count] = new PointObj(x, y);
count++;
}
rootBranch = new Branch(0, 0, pointArr);
}
void drawShape() {
rootBranch.drawMe();
}
}
class Branch {
int level, num;
PointObj[] outerPoints = {
}i
PointObj[] midPoints = {
}i
PointObj[] projPoints = {
}i
Branch[] myBranches = {
}i
Branch(int lev, int n, PointObj[]points) {
level = lev;
num = n;
outerPoints = points;
midPoints = calcMidPoints();
projPoints = calcStrutPoints();

if ((level+l)< maxLevels) {
Branch childBranch = new Branch(level+l, 0, projPoints);
myBranches = (Branch[])append(myBranches, childBranch);

for (int k=0; k<outerPoints.length; k++) {
int nextk = (k+4)%outerPoints.length;
PointObj[] newPoints = {
outerPoints[k], midPoints[k], projPoints[k], projPoints[nextk],
midPoints[nextk]

}i
childBranch = new Branch(level+l, k+1, newPoints);
myBranches = (Branch|[])append(myBranches, childBranch);

}
}

}

void drawMe() {
stroke(255,250,200);
strokeWeight (6);
for (int i = 0; i < outerPoints.length; i++) {
int nexti = i+1;
if (nexti == outerPoints.length) {
nexti = 0;
}
line(outerPoints[i].x, outerPoints[i].y, outerPoints[nexti].x,
outerPoints[nexti].y);

// las lineas desde los puntos medios:
strokeWeight (2);
£i11(255,0,0);
for(int j=0; j<midPoints.length; j++) {
ellipse(midPoints[]j].x, midPoints[]j].y, 5, 5);//la posicién de los puntos
medios en la linea base del hexagono
line(midPoints[j].X, midPoints[j].y, projPoints[j].x, projPoints[]].y); //
las lineas a desprender desde el punto medio
ellipse(projPoints[j].X, projPoints[jl.y, 5, 5);//el punto final de la
linea

}

// dibuja la sub-estructura ramificada:
for(int k=0; k<myBranches.length; k++) {
myBranches[k].drawMe();
}
}

PointObj[] calcMidPoints() {
PointObj[] mpArray = new PointObj[outerPoints.length];
for (int i = 0; i < outerPoints.length; i++) {
int nexti = i+1l;
if (nexti == outerPoints.length) {
nexti = 0;

}
PointObj thisMP = calcMidPoint(outerPoints[i], outerPoints[nexti]);
mpArray[i] = thisMP;

}

return mpArray;

}

PointObj calcMidPoint (PointObj endl, PointObj end2) {
float mx, my;
if (endl.x>end2.x) {
mx=end2.x + ((endl.x - end2.x)/2);
telse{
mx=endl.x+((end2.x-endl.x)/2);

}
if(endl.y>end2.y){

my=end2.y+((endl.y-end2.y)/2);
telse{
my=endl.y+((end2.y-endl.y)/2);
}
return new PointObj(mx,my);

}

PointObj[] calcStrutPoints() {
PointObj[] strutArray = new PointObj[midPoints.length];
for(int i=0; i< midPoints.length; i++) {
int nexti = (i+3)%midPoints.length ;
PointObj thisSP = calcProjPoint(midPoints[i], outerPoints[nexti]);
strutArray[i] = thisSP;
}

return strutArray;

}

PointObj calcProjPoint(PointObj mp, PointObj op) {
float px, py;
/// inicio de los célculos trigonométricos para la proyeccién de los puntos
medios:
float adj,opp;
if (op.x>mp.x) {
Opp=0p.X-Mp.X;
telse{
opp=mp.X-0p.X;
}
if (op.y>mp.y){
adj=op.y-mp.y;
telse{
) adj=mp.y-op.y;
if (op.x>mp.x) {
px=mp.x+(opp*_strutFactor);
telse{
pxX=mp.xX-(opp*_strutFactor);
}
if(op.y>mp.y){
py=mp.y+(adj*_strutFactor);
telse({
py=mp.y-(adj* strutFactor);

/// fin de los cédlculos trigonométricos para la proyeccién de los puntos
medios:
return new PointObj(px, pPY);
}
}

