// Meditative Symbiosis. Jean Laffert . 2015
// example code of the graphic pattern designed to be projected over the surface of the plant.
// note: this example is only for demonstrate the graphic pattern, it does not include the connection to sensors.
// This code is a variation based on the "Sutcliffe Pentagon" composition, by Matt Pearson (see: Generative Art-Pearson 2011.p170-183)
// jdlaffert.com
//==

FractalRoot pentagon;
float _strutFactor = 0.1;
float _strutNoise;
int _maxLevels = 3;

// ====================== main program ===================
void setup() {
 background (0);
 frameRate (5);
 size(800, 600);
 smooth();
 _strutNoise=random(10);
}

void draw(){

background (0);

_strutNoise+=0.01;
_strutFactor=(noise(_strutNoise)*3)-1;

pentagon=new FractalRoot(frameCount);
pentagon.drawShape();

}

// ======================= objects ======================

class PointObj {
 float x, y;
 PointObj(float ex, float why) {
 x = ex;
 y = why;
 }
}

class FractalRoot {
 PointObj[] pointArr = new PointObj[6];
 Branch rootBranch;

 FractalRoot(float startAngle) {
 float centX = width/2;
 float centY = height/2;
 int count = 0;
 for (int i = 0; i<360; i+=60) {
 float x = centX + (240 * cos(radians(i)));
 float y = centY + (240 * sin(radians(i)));
 pointArr[count] = new PointObj(x, y);
 count++;
 }
 rootBranch = new Branch(0, 0, pointArr);
 }

 void drawShape() {
 rootBranch.drawMe();
 }
}

class Branch {
 int level, num;
 PointObj[] outerPoints = {
 };
 PointObj[] midPoints = {
 };
 PointObj[] projPoints = {
 };
 Branch[] myBranches = {
 };

 Branch(int lev, int n, PointObj[]points) {
 level = lev;
 num = n;
 outerPoints = points;

 midPoints = calcMidPoints();
 projPoints = calcStrutPoints();

 if ((level+1)< _maxLevels) {
 Branch childBranch = new Branch(level+1, 0, projPoints);
 myBranches = (Branch[])append(myBranches, childBranch);

 for (int k=0; k<outerPoints.length; k++) {
 int nextk = (k+4)%outerPoints.length;
 PointObj[] newPoints = {
 outerPoints[k], midPoints[k], projPoints[k], projPoints[nextk], midPoints[nextk]
 };
 childBranch = new Branch(level+1, k+1, newPoints);
 myBranches = (Branch[])append(myBranches, childBranch);
 }
 }
 }

 void drawMe() {
 stroke(255,70);
 strokeWeight(3- level);
 for (int i = 0; i < outerPoints.length; i++) {
 int nexti = i+1;
 if (nexti == outerPoints.length) {
 nexti = 0;
 }
 line(outerPoints[i].x, outerPoints[i].y, outerPoints[nexti].x, outerPoints[nexti].y);
 }

 strokeWeight(0.1);
 fill(255,150);
 for(int j=0; j<midPoints.length; j++) {
 ellipse(midPoints[j].x, midPoints[j].y, 5, 5);
 line(midPoints[j].x, midPoints[j].y, projPoints[j].x, projPoints[j].y);
 ellipse(projPoints[j].x, projPoints[j].y, 5, 5);
 }
 for(int k=0; k<myBranches.length; k++) {
 myBranches[k].drawMe();
 }
 }

 PointObj[] calcMidPoints() {
 PointObj[] mpArray = new PointObj[outerPoints.length];
 for (int i = 0; i < outerPoints.length; i++) {
 int nexti = i+1;
 if (nexti == outerPoints.length) {
 nexti = 0;
 }
 PointObj thisMP = calcMidPoint(outerPoints[i], outerPoints[nexti]);
 mpArray[i] = thisMP;
 }
 return mpArray;
 }

 PointObj calcMidPoint(PointObj end1, PointObj end2) {
 float mx, my;

 if(end1.x>end2.x) {
 mx=end2.x + ((end1.x - end2.x)/2);
 }else{
 mx=end1.x+((end2.x-end1.x)/2);
 }
 if(end1.y>end2.y){
 my=end2.y+((end1.y-end2.y)/2);
 }else{
 my=end1.y+((end2.y-end1.y)/2);
 }
 return new PointObj(mx,my);
 }

 PointObj[] calcStrutPoints() {
 PointObj[] strutArray = new PointObj[midPoints.length];
 for(int i=0; i< midPoints.length; i++) {
 int nexti = (i+3)%midPoints.length ;
 PointObj thisSP = calcProjPoint(midPoints[i], outerPoints[nexti]);
 strutArray[i] = thisSP;
 }
 return strutArray;
 }

 PointObj calcProjPoint(PointObj mp, PointObj op) {
 float px, py;
 float adj,opp;
 if(op.x>mp.x){
 opp=op.x-mp.x;
 }else{
 opp=mp.x-op.x;
 }
 if(op.y>mp.y){
 adj=op.y-mp.y;
 }else{
 adj=mp.y-op.y;
 }
 if(op.x>mp.x){
 px=mp.x+(opp*_strutFactor);
 }else{
 px=mp.x-(opp*_strutFactor);
 }
 if(op.y>mp.y){
 py=mp.y+(adj*_strutFactor);
 }else{
 py=mp.y-(adj*_strutFactor);
 }

 return new PointObj(px, py);
 }
}

